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1 Introduction 
Extracting relevant information from multiblock data by reducing dimensionality, summarizing the 

information in an understandable way or visualizing multiblock data for interpretation purposes, are 

challenges often raised in chemometrics. When K data blocks denoted 𝐗𝑘 (1 ≤ 𝑘 ≤ 𝐾) are available 

and each data block 𝐗𝑘 reflects the measurements of 𝑝𝑘 quantitative variables on n individuals, 

several multiblock methods are proposed in the literature such as:  

(i) Hierarchical Principal Component Analysis (HPCA) [1,2] that is identical to Common 

Component and Specific Weights Analysis (CCSWA) [3,4,5],  

(ii) Consensus Principal Component Analysis (CPCA) [1,2] that is identical to Multiple Co-inertia 

Analysis (MCOA) [5,6], 

(iii) Structuration de Tableau A Trois Indices de la Statistique (STATIS) [7,8]. 

(iv) Other multiblock exploratory methods less used in chemometrics such as MAXBET [9].  

Relating these methods to each other is an important issue, that was modestly studied in the literature. 

2 Material and methods 
Recently, the canonical representation of multiblock methods was introduced from a factorization 

lemma for partitioned matrices [10]. It highlights the strategy adopted by these methods for analyzing 

multiblock data. This strategy involves two analyzes: (i) a global analysis described by a factorization 

of the whole data matrix. (ii) a block analysis described by the factorization of each block. The 

interpretation and visualization of the results of this canonical representation are based on the same 

principle as the usual Principal Component Analysis and allow the different methods to be directly 

compared.  

Four multiblock datasets were considered for comparing the results of the different methods: butters 

(5 blocks, [11]), bigCheeses (3 blocks, [12,13]), meats (3 blocks, [14]) and cheeses (3 blocks, [15]). 

Several multiblock methods were computed on these datasets with R.4.0.2 using RGCCA package 

[16]. Results were compared with several indicators based on explained variance, but also 

correlations between the individual projections.  

3 Results and discussion 
Figure 1 shows the explained variance (per dimension and per block) for the cheeses and the meats 

datasets. A convergence between the results was observed for cheeses while a divergence between 

results was observed for meats. Other comparison indicators led to the same results. Same approach 

will be used for STATIS method. 

4 Conclusion 
Canonical representation of multiblock methods allows different multiblock methods to be 

compared. Conducting this comparison on 4 different datasets showed that divergence (partial or 

total) between methods can happen.  



 

 

 
Figure 1: Explained variances according to the considered dimension for cheeses (a,b,c) and meats 

(d, e, f) depending on the chosen method (MAXBET, CPCA or COMDIM) 
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