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1 Introduction 

Raw materials used in cell fermentation can be complex. Because cell culture process conditions are 

highly controlled in biopharmaceutical manufacturing, the raw material lot-to-lot variability can 

therefore have a high impact on the yield of the vaccine antigen production processes. 3D 

fluorescence spectroscopy can be used to characterize complex raw materials and thus is a useful 

option for the holistic analysis. The combination of spectroscopy and chemometric methods like 

principal component analysis (PCA), parallel factor analysis (PARAFAC) or partial least squares 

(PLS) and multilinear PLS (N-PLS) modeling has been commonly used as a tool for the 

identification or classification of raw materials. In our presentation, we show the usefulness of 3D 

fluorescence to characterize raw materials and ultimately predict antigen yield based on the batch 

raw material. 

2 Material and methods 

The first objective was to identify the best pretreatment combination to improve as much as 

possible the reproducibility of fluorescence measurements. Forty-three multiway 3D fluorescence 

spectra from 16 batches of raw material with 2 to 4 repetitions per batch were used. The 

reproducibility of measurements was evaluated by visualization of the score plots and by 

calculation of the Wilks’ lambda on the scores of the unsupervised models developed either on 3D 

spectra with PARAFAC or on unfolded spectra with PCA. The second objective was to evaluate the 

link between the fluorescence spectra of a key raw material and the end-product yield of antigen. 

The quality attribute to predict was optimized as the median of antigen yield normalized by the 

average number of viable cells. Seventeen fluorescence spectra from 6 batches of the key raw 

material were used for the development of supervised models, either by N-PLS using 3D spectra or 

by PLS using unfolded spectra, with a cross-validation strategy by raw material batch. The 

performances of the prediction models were evaluated based on their root mean squared error of 

cross-validation (RMSECV) and their determination coefficient (R
2
). Finally, variable selection by 

interval PLS (i-PLS) or by knowledge from the PARAFAC loadings was carried out to improve the 

performances of the supervised regression models. 

3 Results and discussion 

The unsupervised analysis of fluorescence spectra, using unfolded PCA or PARAFAC, 

demonstrated the importance of combining several pretreatments to improve the intra-batch 
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reproducibility and inter-batch separation. PCA on unfolded spectra allowed a better visualization 

of the effect of pretreatments on the groups of samples, whereas PARAFAC on 3D spectra favored 

the interpretation of loadings and the identification of important variables. The optimal pretreatment 

combination consisted of removing the Rayleigh scattering areas
[1,2]

, applying a baseline correction, 

normalizing by the amplitude of the water Raman band
[3]

, and normalizing by the raw material 

weight.  

The supervised analysis emphasized the importance of selecting variables that contain the most 

relevant information to predict this parameter of interest, in addition to choosing the appropriate 

combination of spectral pretreatments. In the optimal conditions, classic PLS models on unfolded 

fluorescence spectra reached similar performances compared to more complex multiway N-PLS 

models on 3D spectra. The best predictions were obtained after reducing the Emission range to 400-

428 nm and the Excitation range to 310-378 nm, which corresponds to a band identified on the third 

component of PARAFAC during unsupervised analysis (Figure 1). 

 

Figure 1:  Results of the prediction of the protein yield using PARAFAC knowledge and PLS. (A-B) Emission 

and excitation components obtained by PARAFAC. (C) Area selected. (D) Summary of PLS performance. 

4 Conclusion 

We have developed a 3D fluorescence method which can be used to characterize a complex raw 

material and ultimately establish a link to the efficacy of individual batch of raw material in terms 

of protein yield. After the optimization of the pretreatments used to improve the intra-batch 

reproducibility and inter-batch separation, and the selection of the most important variables by 

knowledge from the PARAFAC loadings, the optimal PLS model gives a RMSECV of 1.90 for the 

normalized antigen yield corresponding to a relative error of 1.86%. Compared to the Standard 

Error of Laboratory of about 3% for this attribute, the prediction model seems to be very promising. 

However, these results should be taken with caution as the number of batches used to calibrate the 

model was very low and a real independent test could not yet be performed. This ability to predict 

product yield before the use of the raw material has the potential to control one of the major process 

variables increasing the robustness of process performance and identifying leverage to improve 

product yield. 
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