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1 Introduction 
Least squares-based estimations lay behind most chemometric methodologies. Their properties, 
though, have been extensively studied mainly in the domain of regression, in relation to which the 
effect of well-known deleterious factors (like object leverage or data distributions deviating from 
ideal conditions) on the accuracy of the prediction of an external response variable have been 
thoroughly assessed [1]. Conversely, much less attention has been paid to what these factors might 
yield in alternative scenarios, where least squares approaches are still utilised, yet the objectives of 
data modelling may be very different. As an example, one can think of multivariate curve resolution 
(MCR) problems which are usually addressed by means of Multivariate Curve Resolution-
Alternating Least Squares (MCR-ALS [2]). In this respect, this work wants to offer a perspective on 
the basic principles of MCR-ALS from the regression point of view. In particular, the following 
critical aspects will be highlighted: in certain situations, i) if the number of analysed data points is 
too large, the leverage of those that may be essential for a MCR-ALS resolution might become too 
low for guaranteeing its correctness and ii) in order to overcome this black hole effect and improve 
the accuracy of the MCR-ALS output, data reduction – i.e., the selection of a smaller subset of 
observations among all the investigated ones – can be exploited. More in detail, this communication 
will provide a practical illustration of such aspects in the field of hyperspectral imaging where even 
single experimental runs may lead to the generation of massive amounts of spectral recordings. 

2 Motivation example 
Imagine a situation in which a univariate regression model is to be constructed between an 
explanatory variable (x) and a response variable (y), both measured for 100 samples (see Figure 1a). 
In the presence of a single high-leverage data item (the empty green dot), the estimation of the 
parameters of this model results to be clearly biased if carried out by classical least squares (see the 
blue dotted line). Assume now to increase the number of collected data points up to 10000 (see Figure 
1b). In this case, the bias induced by the aforementioned high-leverage observation becomes 
insignificant and, subsequently, the final regression model is capable of accurately describing the 
underlying correlation between x and y. Nothing new under the sun, one may say, but in a MCR 
context, the consequences of such a property could be dramatic, especially when analysing data 
related to chemical mixtures containing minor constituents. An example is provided in Figure 1c. 
Figure 1c displays the (first-eigenvector normalised) scores yielded by the Principal Component 
Analysis (PCA) factorisation of a set of spectral measurements conducted on mixtures of three 
ingredients, A, B and C, in which C always appears in very low concentrations except for a single 
sample that consists only of this component (see the green square labelled as “C”). Measurements of 
pure A and pure B are also available (see the green squares labelled as “A” and “B”, respectively). If 
a MCR-ALS decomposition of these data is carried out, the high density of points noticeable in the 
bottom area of the plot prevents the computational procedure from attaining the correct resolution 



 

 

(see the blue arrows) even if selective information exists for A, B and C. One may look at this 
phenomenon as if such points would “attract” the MCR-ALS solution towards the centre of mass of 
the represented point cloud (hence the name black hole effect). It goes without saying that increasing 
even more the number of observations would further emphasize this effect. Conversely, if data are 
preliminarily reduced (here, only 9 data points were selected as proposed in [3]), thus, increasing the 
leverage value of the observation labelled as “C”, more accurate and reliable resolved profiles are 
obtained by the execution of MCR-ALS (see Figure 1d). 

 

Figure 1 – Top panel: univariate regression plots in the presence of a single outlying observation. a) sample 
size: 100 – one high-leverage outlying data point; b) sample size: 10000 – one low-leverage outlying data 

point. Bottom panel: PCA representation of a multivariate curve resolution problem for ternary mixtures. c) 
sample size: 57600 – biased estimation of component C; d) sample size: 9 (numbered data points) – reliable 
estimation of component C. Original data are graphed as green symbols, ground-truth solutions as red dots, 
lines and arrows and estimated solutions (yielded by classical least squares and MCR-ALS, respectively) as 

blue dots, lines and arrows. 

3 Results and discussion 
Different MCR scenarios will be illustrated through the analysis of hyperspectral imaging datasets. It 
will be highlighted how an appropriate pixel selection (conducted prior to the modelling stage) can 
be crucial to attain reliable MCR-ALS resolutions, even in the presence of pure selective information 
encoded within the original measurements. 

4 Conclusion 
This presentation will offer a novel perspective on the MCR problem from the point of view of 
regression theory. Such a perspective will shed light on the effect that the size of the analysed data 
and their intrinsic multivariate distribution can have on the quality and the reliability of the solutions 
that least squares-based curve resolution approaches may provide. This will potentially open new 
interesting outlooks on an aspect not yet well-established in the chemometric community: information 
selection in MCR. 
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